2-MIB episodes

254

Geosmin episodes

112

2-MIB + Geosmin

22

Distribution of 2-MIB and geosmin over the globe

Both MIB and geosmin are of concern in water treatment and supply systems, as their presence can lead to consumer complaints about the taste and odor of drinking water. Treatment methods such as activated carbon filtration and advanced oxidation processes are employed to reduce or eliminate these compounds from water sources. Monitoring and controlling the growth of the bacteria that produce MIB and geosmin are also important aspects of managing water quality.

Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Order: Pseudanabaenales
  • Family: Pseudanabaenaceae
  • Genus: Pseudanabaena
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Oscillatoriaceae
  • Genus: Planktothricoides
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Oscillatoriaceae
  • Genus: Oscillatoria
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Microcoleaceae
  • Genus: Planktothrix
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Oscillatoriaceae
  • Genus: Phormidium
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Microcoleaceae
  • Genus: Lyngbya
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Aerosakkonemataceae
  • Genus: Aerosakkonema
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Microcoleaceae
  • Genus: Limnoraphis
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Order: Leptolyngbyales
  • Family: Leptolyngbyaceae
  • Genus: Leptolyngbya
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Microcoleaceae/微鞘藻科
  • Genus: Microcoleus/微鞘藻属
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Order: Desertifilales
  • Family: Desertifilaceae
  • Genus: Desertifilum ((dadheech2014desertifilum?))
Records:
  • Desertifilum tharense FACHB 867 (Oscillatoria sp. FACHB 867) (四川成都土壤) (张琪 et al., 2023)
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Oscillatoriaceae
  • Genus: Sodalinema
Records:
  • Sodalinema sp. FACHB-2717 (Phormidium sp. FACHB-2717) 山西运城盐池底栖 (张琪 et al., 2023)
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Synechococcophycidae
  • Order: Synechococcales
  • Family: Synechococcales
  • Genus: Jaaginema
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Microcoleaceae
  • Genus: Tenebriella
Records:
蓝枝藻属 Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Chroococcales
  • Family: Pleurocapsaceae
  • Genus: Hyella
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Synechococcophycidae
  • Order: Synechococcales
  • Family: Synechococcaceae
  • Genus: Synechococcus
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Oscillatoriophycidae
  • Order: Oscillatoriales
  • Family: Microcoleaceae
  • Genus: Kamptonema
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Order: Nodosilineales
  • Family: Nodosilineaceae
  • Genus: Nodosilinea
Records:
Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Nostocophycidae
  • Order: Nostocales
  • Family: Hapalosiphonaceae
  • Genus: Hapalosiphon
Records:
侧生藻属 Classification:
  • Empire: Prokaryota
  • Kingdom: Bacteria
  • Subkingdom: Negibacteria
  • Phylum: Cyanobacteria
  • Class: Cyanophyceae
  • Subclass: Nostocophycidae
  • Order: Nostocales
  • Family: Hapalosiphonaceae
  • Genus: Fischerella
Records:

MIB (2-Methylisoborneol): MIB is a natural compound that contributes to the earthy or musty odor commonly associated with water bodies. It is produced by certain cyanobacteria (blue-green algae) and actinomycetes, and is responsible for the unpleasant taste and odor in water. MIB is a common issue in drinking water supplies and can affect the water’s aesthetic quality, though it is not considered toxic.

Geosmin: Geosmin is another compound responsible for earthy and musty odors, particularly in water. Like MIB, geosmin is produced by certain types of bacteria, including cyanobacteria and actinomycetes. It is a common cause of taste and odor issues in drinking water and can be detected at extremely low concentrations. Geosmin is not harmful to human health but can affect the palatability of water.

Both MIB and geosmin are of concern in water treatment and supply systems, as their presence can lead to consumer complaints about the taste and odor of drinking water. Treatment methods such as activated carbon filtration and advanced oxidation processes are employed to reduce or eliminate these compounds from water sources. Monitoring and controlling the growth of the bacteria that produce MIB and geosmin are also important aspects of managing water quality.

We are happy to update this list as soon as possible, please feel free to send us the information via email, or wechat, or twitter.

Below are literatures

References

Alghanmi, H.A., Alkam, F.M., AL-Taee, M.M., 2018. Effect of light and temperature on new cyanobacteria producers for geosmin and 2-methylisoborneol. Journal of Applied Phycology 30, 319–328. https://doi.org/10.1007/s10811-017-1233-0
Bafford, R.A., Seagull, R.W., Chung, S.-Y., Millie, D.F., 1993. Intracellular localization of the taste/odor metabolite 2-methylisoborneol in Oscillatoria limosa (cyanophyta)1. Journal of Phycology 29, 91–95. https://doi.org/10.1111/j.1529-8817.1993.tb00285.x
Baker, P.D., Steffensen, D.A., Humpage, A.R., Nicholson, B.C., Falconer, I.R., Lanthois, B., Fergusson, K.M., Saint, C.P., 2001. Preliminary evidence of toxicity associated with the benthic cyanobacterium phormidium in south australia. Environmental Toxicology 16, 506–511. https://doi.org/10.1002/tox.10009
Berglind, L., Holtan, H., Skulberg, O.M., 1983a. Case studies on off-flavours in some norwegian lakes. Water Science and Technology 15, 199–209. https://doi.org/10.2166/wst.1983.0144
Berglind, L., Johnsen, I.J., Ormerod, K., Skulberg, O.M., 1983b. Oscillatoria brevis (kutz.) gom. And some other especially odouriferous benthic cyanophytes in norwegian inland waters. Water Science and Technology 15, 241–246. https://doi.org/10.2166/wst.1983.0148
Cao, T., Fang, J., Jia, Z., Zhu, Y., Su, M., Zhang, Q., Song, Y., Yu, J., Yang, M., 2023. Early warning of MIB episode based on gene abundance and expression in drinking water reservoirs. Water Research 119667. https://doi.org/https://doi.org/10.1016/j.watres.2023.119667
Chiu, Y., Yen, H., Lin, T., 2016. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Environmental Research 151, 618–627. https://doi.org/10.1016/j.envres.2016.08.034
Giglio, S., Chou, W.K.W., Ikeda, H., Cane, D.E., Monis, P.T., 2011. Biosynthesis of 2-methylisoborneol in cyanobacteria. Environmental Science & Technology 45, 992–998. https://doi.org/10.1021/es102992p
Izaguirre, G., Hwang, C.J., Krasner, S.W., Mcguire, M.J., 1982. Geosmin and 2-methylisoborneol from cyanobacteria in three water supply systems. Applied and Environmental Microbiology 43, 708–714.
Izaguirre, G., Hwang, C., Krasner, S., Mcguire, M., 1983. Production of 2-methyliso-borneol by two benthic cyanophyta. Water Science & Technology 15, 211–220.
Izaguirre, G., Taylor, W., 2007. Geosmin and MIB events in a new reservoir in southern california. Water Science & Technology 55, 9–14.
Izaguirre, G., Taylor, W.D., 1998. A Pseudanabaena species from Castaic Lake, California, that produces 2-methylisoborneol. Water Research 32, 1673–1677. https://doi.org/10.1016/s0043-1354(97)00379-5
Izaguirre, G., Taylor, W.d., 1995. Geosmin and 2-methylisoborneol production in a major aqueduct system. Water Science and Technology 31, 41–48. https://doi.org/10.1016/0273-1223(95)00454-u
Izaguirre, G., Taylor, W., Pasek, J., 1999. Off-flavor problems in two reservoirs, associated with planktonic Pseudanabaena species. Water Science and Technology 40, 85.
Jia, Z., Su, M., Liu, T., Guo, Q., Wang, Q., Burch, M., Yu, J., Yang, M., 2019. Light as a possible regulator of MIB-producing Planktothrix in source water reservoir, mechanism and in-situ verification. Harmful Algae 88, 101658. https://doi.org/10.1016/j.hal.2019.101658
Kakimoto, M., Ishikawa, T., Miyagi, A., Saito, K., Miyazaki, M., Asaeda, T., Yamaguchi, M., Uchimiya, H., Kawai-yamada, M., 2014. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. Journal of Plant Physiology 171, 292–300. https://doi.org/10.1016/j.jplph.2013.09.005
Lu, J., Su, M., Su, Y., Wu, B., Cao, T., Fang, J., Yu, J., Zhang, H., Yang, M., 2022. Driving forces for the growth of MIB-producing Planktothricoides raciborskii in a low-latitude reservoir. Water Research 118670. https://doi.org/10.1016/j.watres.2022.118670
Mario R. Tellez, *., Kevin K. Schrader, Kobaisy, A.M., 2001. Volatile components of the cyanobacterium Oscillatoria Perornata (skuja). Journal of Agricultural and Food Chemistry 49, 5989–5992. https://doi.org/10.1021/jf010722p
Martin, J.F., Izaguirre, G., Waterstrat, P., 1991. A planktonic Oscillatoria species from Mississippi Catfish Ponds that produces the off-flavor compound 2-methylisoborneol. Water Research 25, 1447–1451. https://doi.org/10.1016/0043-1354(91)90173-n
Naes, H., Post, A.F., 1988. Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply. Archives of Microbiology 150, 333–337. https://doi.org/10.1007/bf00408303
Negoro, T., Ando, M., Ichikawa, N., 1988. blue-green Algae in Lake Biwa Which Produce Earthy-musty Odors. Water Science and Technology 20, 117–123. https://doi.org/10.2166/wst.1988.0232
Oh, H.-S., Lee, C.S., Srivastava, A., Oh, H.-M., Ahn, C.-Y., 2017. Effects of environmental factors on cyanobacterial production of odorous compounds: Geosmin and 2-methylisoborneol. Journal of Microbiology and Biotechnology 27, 1316–1323. https://doi.org/10.4014/jmb.1702.02069
Rashash, D.m.C., Dietrich, A.m., Hoehn, R.c., Parker, B.c., 1995. The influence of growth conditions on odor-compound production by two chrysophytes and two cyanobacteria. Water Science and Technology 31, 165–172. https://doi.org/10.1016/0273-1223(95)00472-y
Smith, J.l., Boyer, G.l., Zimba, P.v., 2008. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture 280, 5–20. https://doi.org/10.1016/j.aquaculture.2008.05.007
Su, M., Fang, J., Jia, Z., Su, Y., Zhu, Y., Wu, B., Little, J.C., Yu, J., Yang, M., 2023. Biosynthesis of 2-methylisoborneol is regulated by chromatic acclimation of Pseudanabaena. Environmental Research 115260. https://doi.org/10.1016/j.envres.2023.115260
Su, M., Yu, J., Zhang, J., Chen, H., An, W., Vogt, R.D., Andersen, T., Jia, D., Wang, J., Yang, M., 2015. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: Distribution and odor producing potential. Water Research 68, 444–453. https://doi.org/10.1016/j.watres.2014.09.038
Su, M., Zhu, Y., Jia, Z., Liu, T., Yu, J., Burch, M., Yang, M., 2021. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Water Research 192, 116848. https://doi.org/10.1016/j.watres.2021.116848
Suruzzaman, M., Cao, T., Lu, J., Wang, Y., Su, M., Yang, M., 2022. Evaluation of the MIB-producing potential based on real-time qPCR in drinking water reservoirs. Environmental Research 112308. https://doi.org/10.1016/j.envres.2021.112308
Suurnäkki, S., Gomez-saez, G.V., Rantala-ylinen, A., Jokela, J., Fewer, D.P., Sivonen, K., 2015. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Water Research 68, 56–66. https://doi.org/10.1016/j.watres.2014.09.037
Tabachek, J.L., Yurkowski, M., 1976. Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manitoba. Journal of the Fisheries Research Board of Canada 33, 25–35. https://doi.org/10.1139/f76-004
Tawong, W., 2017. Diversity of the potential 2-methylisoborneol-producing genotypes in thai strains of Planktothricoides (cyanobacteria). Brazilian Archives of Biology and Technology 60. https://doi.org/10.1590/1678-4324-2017160567
Te, S.H., Tan, B.F., Boo, C.Y., Thompson, J.R., Gin, K.Y., 2017. Genomics insights into production of 2-methylisoborneol and a putative cyanobactin by Planktothricoides sp. sr001. Standards in Genomic Sciences 12, 35.
Tsuchiya, Y., Matsumoto, A., 1999. Characterization of oscillatoria f. Granulata producing 2-methylisoborneol and geosmin. Water Science and Technology 40, 245–250. https://doi.org/10.1016/s0273-1223(99)00564-8
Tsuchiya, Y., Matsumoto, A., 1988. Identification of volatile metabolites produced by blue-green algae. Water Science and Technology 20, 149. https://doi.org/10.2166/wst.1988.0236
Tuji, A., Niiyama, Y., 2018. Two new Pseudanabaena (Cyanobacteria, Synechococcales) species from Japan, Pseudanabaena cinerea and Pseudanabaena yagii, which produce 2-methylisoborneol. Phycological Research 66, 291–299. https://doi.org/10.1111/pre.12327
Van Der Ploeg, M., Dennis, M., De Regt, M., 1995. Biology of Oscillatoria chalybea, a 2-methylisoborneol producing blue-green alga of Mississippi Catfish Ponds. Water Science and Technology 31, 173–180. https://doi.org/10.1016/0273-1223(95)00473-Z
Wang, Z., Xiao, P., Song, G., Li, Y., Li, R., 2015. Isolation and characterization of a new reported cyanobacterium Leptolyngbya Bijugata coproducing odorous geosmin and 2-methylisoborneol. Environmental Science and Pollution Research 22, 12133–12140. https://doi.org/10.1007/s11356-015-4470-2
Wang, Z., Xu, Y., Shao, J., Wang, J., Li, R., 2011. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: Isolation, characterization, and expression in response to light. Plos One 6, E18665. https://doi.org/10.1371/journal.pone.0018665
Wu, J., Jüttner, F., 1988. Differential partitioning of geosmin and 2-methylisoborneol between cellular constituents in Oscillatoria tenuis. Archives of Microbiology 150, 580–583. https://doi.org/10.1007/bf00408253
Yagi, M., 1988. Musty odour problems in lake biwa 1982-1987. Water Science and Technology 20, 133–142. https://doi.org/10.2166/wst.1988.0234
Zhong, F., Gao, Y., Yu, T., Zhang, Y., Xu, D., Xiao, E., He, F., Zhou, Q., Wu, Z., 2011. The management of undesirable cyanobacteria blooms in channel catfish ponds using a constructed wetland: Contribution to the control of off-flavor occurrences. Water Research 45, 6479–6488. https://doi.org/10.1016/j.watres.2011.09.044
Zimba, P.V., Dionigi, C.P., Millie, D.F., 1999. Evaluating the relationship between photopigment synthesis and 2-methylisoborneol accumulation in cyanobacteria. Journal of Phycology 35, 1422–1429. https://doi.org/10.1046/j.1529-8817.1999.3561422.x
Zimmerman, W.j., Soliman, C.m., Rosen, B.h., 1995. Growth and 2-methylisoborneol production by the cyanobacterium Phormidium Lm689. Water Science and Technology 31, 181–186. https://doi.org/10.1016/0273-1223(95)00474-2
张琪, 夏逸若, 李林, 李天丽, 郑凌凌, 宋立荣, 2023. 淡水藻种库(FACHB)库藏产2-MIB蓝藻的鉴定及其产嗅特征研究. 水生生物学报 0, 0–0. https://doi.org/10.7541/2023.2022.0270